A Rising Tide?
The Local Incidence of the Second Wave of Globalization

Rowena Gray & Greg Wright

UC Merced
Overview

- Have trade shocks been generally welfare-enhancing? Was China special?
Overview

- Have trade shocks been generally welfare-enhancing? Was China special?
- The period 1970 to 1980 saw a doubling of US trade as a share of GDP
Overview

- Have trade shocks been generally welfare-enhancing? Was China special?
- The period 1970 to 1980 saw a doubling of US trade as a share of GDP
 - roughly balanced between exports and imports
Overview

- Have trade shocks been generally welfare-enhancing? Was China special?
- The period 1970 to 1980 saw a doubling of US trade as a share of GDP
 - roughly balanced between exports and imports
 - in large part due to containerization (Bernhofen, et al, 2012)
Overview

- Have trade shocks been generally welfare-enhancing? Was China special?

- The period 1970 to 1980 saw a doubling of US trade as a share of GDP
 - roughly balanced between exports and imports
 - in large part due to containerization (Bernhofen, et al, 2012)

- Today: what were the short- and long-run consequences for US local labor markets?
Overview

- Have trade shocks been generally welfare-enhancing? Was China special?

- The period 1970 to 1980 saw a doubling of US trade as a share of GDP
 - roughly balanced between exports and imports
 - in large part due to containerization (Bernhofen, et al, 2012)

- Today: what were the short- and long-run consequences for US local labor markets?

- Can summarize impact by looking at local land values
Overview

- Have trade shocks been generally welfare-enhancing? Was China special?

- The period 1970 to 1980 saw a doubling of US trade as a share of GDP
 - roughly balanced between exports and imports
 - in large part due to containerization (Bernhofen, et al, 2012)

- Today: what were the short- and long-run consequences for US local labor markets?

- Can summarize impact by looking at local land values

- Also look at median income and home prices to proxy changes in standard of living
Overview

- Have trade shocks been generally welfare-enhancing? Was China special?
- The period 1970 to 1980 saw a doubling of US trade as a share of GDP
 - roughly balanced between exports and imports
 - in large part due to containerization (Bernhofen, et al, 2012)
- Today: what were the short- and long-run consequences for US local labor markets?
- Can summarize impact by looking at local land values
- Also look at median income and home prices to proxy changes in standard of living
- Gains to workers vs property owners: explore heterogeneity due to different local housing and labor supply elasticities
Trade as Share of US GDP
Local labor market literature is large and growing by the minute.

- China shock: Autor, Dorn and Hanson (2013); Pierce and Schott (2016); Acemoglu, et al (2016)
- Long-run impact of trade: Bernard, Jensen and Schott (2006); Dix-Carneiro & Kovak (2017)
- Exports & Imports jointly: Feenstra, Ma & Xu (2017)
Local labor market literature is large and growing by the minute

- China shock: Autor, Dorn and Hanson (2013); Pierce and Schott (2016); Acemoglu, et al (2016)
Local labor market literature is large and growing by the minute

- China shock: Autor, Dorn and Hanson (2013); Pierce and Schott (2016); Acemoglu, et al (2016)

- Long-run impact of trade: Bernard, Jensen and Schott (2006); Dix-Carneiro & Kovak (2017)
Local labor market literature is large and growing by the minute

- China shock: Autor, Dorn and Hanson (2013); Pierce and Schott (2016); Acemoglu, et al (2016)

- Long-run impact of trade: Bernard, Jensen and Schott (2006); Dix-Carneiro & Kovak (2017)

- Exports & Imports jointly: Feenstra, Ma & Xu (2017)
Local labor market literature is large and growing by the minute

- China shock: Autor, Dorn and Hanson (2013); Pierce and Schott (2016); Acemoglu, et al (2016)

- Long-run impact of trade: Bernard, Jensen and Schott (2006); Dix-Carneiro & Kovak (2017)

- Exports & Imports jointly: Feenstra, Ma & Xu (2017)

Research Design

- Estimate for 722 CZ c and year $t \in \{1980, 1990, 2000\}$:

$$y_{ct} - y_{c,1970} = \alpha + \beta_1 \Delta XE_{c,66-80} + \beta_2 \Delta ME_{c,66-80} + Z_{c,1959} + \epsilon_{ct}$$
Research Design

- Estimate for 722 CZ c and year $t \in \{1980, 1990, 2000\}$:

 \[y_{ct} - y_{c,1970} = \alpha + \beta_1 \Delta XE_{c,66-80} + \beta_2 \Delta ME_{c,66-80} + Z_{c,1959} + \epsilon_{ct} \]

- where $y \equiv \log(Y)$ and $Y \in \{\text{Land Prices, Housing Prices, or Income}\}$ (source: Census)
Research Design

- Estimate for 722 CZ c and year $t \in \{1980, 1990, 2000\}$:

$$y_{ct} - y_{c,1970} = \alpha + \beta_1 \Delta XE_{c,66-80} + \beta_2 \Delta ME_{c,66-80} + Z_{c,1959} + \epsilon_{ct}$$

- where $y \equiv \log(Y)$ and $Y \in \{\text{Land Prices, Housing Prices, or Income}\}$ (source: Census)

- XE and ME are local export and import exposure, 1966-1980
Estimate for 722 CZ c and year $t \in \{1980, 1990, 2000\}$:

$$y_{ct} - y_{c,1970} = \alpha + \beta_1 \triangle XE_{c,66-80} + \beta_2 \triangle ME_{c,66-80} + Z_{c,1959} + \epsilon_{ct}$$

where $y \equiv \log(Y)$ and $Y \in \{\text{Land Prices, Housing Prices, or Income}\}$ (source: Census)

XE and ME are local export and import exposure, 1966-1980

Research Design

- Estimate for 722 CZ c and year $t \in \{1980, 1990, 2000\}$:

$$y_{ct} - y_{c,1970} = \alpha + \beta_1 \triangle XE_{c,66-80} + \beta_2 \triangle ME_{c,66-80} + Z_{c,1959} + \epsilon_{ct}$$

- where $y \equiv \log(Y)$ and $Y \in \{\text{Land Prices, Housing Prices, or Income}\}$ (source: Census)

- XE and ME are local export and import exposure, 1966-1980

 - will instrument for these regressors
Research Design

- Estimate for 722 CZ c and year $t \in \{1980, 1990, 2000\}$:

$$y_{ct} - y_{c,1970} = \alpha + \beta_1 \triangle XE_{c,66-80} + \beta_2 \triangle ME_{c,66-80} + Z_{c,1959} + \epsilon_{ct}$$

- where $y \equiv \log(Y)$ and $Y \in \{\text{Land Prices, Housing Prices, or Income}\}$ (source: Census)

- XE and ME are local export and import exposure, 1966-1980
 - will instrument for these regressors

- Z is pre-period Mfg Share and other controls
Research Design: Labor Market Exposure

\[\Delta XE_{c,66-80} = \sum_j \frac{L_{cj,1959}}{L_{c,1959}} \frac{\Delta X_{j,66-80}}{Y_{j,1959}} \]

- where \(c \) denotes local labor market and \(j \) denotes 4-digit SIC industry
Research Design: Labor Market Exposure

\[\Delta XE_{c,66-80} = \sum_j \frac{L_{cj,1959}}{L_{c,1959}} \frac{\Delta X_{j,66-80}}{Y_{j,1959}} \]

- where \(c \) denotes local labor market and \(j \) denotes 4-digit SIC industry
- \(\Delta ME_{c,66-80} \) same but using industry absorption
Research Design: Labor Market Exposure

\[\Delta X_{E,c,66-80} = \sum_j \frac{L_{cj,1959}}{L_{c,1959}} \frac{\Delta X_{j,66-80}}{Y_{j,1959}} \]

- where \(c \) denotes local labor market and \(j \) denotes 4-digit SIC industry
- \(\Delta ME_{c,66-80} \) same but using industry absorption
- \(L_{cj,1959} \): from digitized County Business Patterns, 1959
- \(Y_{j,1959} \): from NBER-CES dataset
- Trade flows: Schott (2008), Feenstra (1996, 97)

Want to instrument for \(\Delta X_{j,66-80} \)

Exploit the container-driven rise in trade, 1966-1980
Research Design: Labor Market Exposure

\[\Delta XE_{c,66-80} = \sum_j \frac{L_{cj,1959}}{L_{c,1959}} \frac{\Delta X_{j,66-80}}{Y_{j,1959}} \]

- where \(c \) denotes local labor market and \(j \) denotes 4-digit SIC industry
- \(\Delta ME_{c,66-80} \) same but using industry absorption
- \(L_{cj,1959} \): from digitized County Business Patterns, 1959
- \(Y_{j,1959} \): from NBER-CES dataset
Research Design: Labor Market Exposure

\[\Delta XE_{c,66-80} = \sum_{j} \frac{L_{cj,1959}}{L_{c,1959}} \frac{\Delta X_{j,66-80}}{Y_{j,1959}} \]

- where \(c \) denotes local labor market and \(j \) denotes 4-digit SIC industry
- \(\Delta ME_{c,66-80} \) same but using industry absorption
- \(L_{cj,1959} \): from digitized County Business Patterns, 1959
- \(Y_{j,1959} \): from NBER-CES dataset
- Trade flows: Schott (2008), Feenstra (1996, 97)
Research Design: Labor Market Exposure

$$\triangle XE_{c,66-80} = \sum_{j} \frac{L_{cj,1959}}{L_{c,1959}} \frac{\triangle X_{j,66-80}}{Y_{j,1959}}$$

- where c denotes local labor market and j denotes 4-digit SIC industry
- $\triangle ME_{c,66-80}$ same but using industry absorption
- $L_{cj,1959}$: from digitized County Business Patterns, 1959
- $Y_{j,1959}$: from NBER-CES dataset
- Trade flows: Schott (2008), Feenstra (1996, 97)
- Want to instrument for $\triangle X_{j,66-80}$
Research Design: Labor Market Exposure

\[\Delta XE_{c,66-80} = \sum_j \frac{L_{cj,1959}}{L_{c,1959}} \frac{\Delta X_{j,66-80}}{Y_{j,1959}} \]

- where \(c \) denotes local labor market and \(j \) denotes 4-digit SIC industry
- \(\Delta ME_{c,66-80} \) same but using industry absorption
- \(L_{cj,1959} \): from digitized County Business Patterns, 1959
- \(Y_{j,1959} \): from NBER-CES dataset
- Trade flows: Schott (2008), Feenstra (1996, 97)
- Want to instrument for \(\Delta X_{j,66-80} \)
- Exploit the **container-driven** rise in trade, 1966-1980
Containerization Sequence

<table>
<thead>
<tr>
<th>Year</th>
<th>Country 1</th>
<th>Country 2</th>
<th>Country 3</th>
<th>Country 4</th>
<th>Country 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1966</td>
<td>India</td>
<td>Netherlands</td>
<td>UK</td>
<td>USA</td>
<td>West Germany</td>
</tr>
<tr>
<td>1968</td>
<td>East Germany</td>
<td>France</td>
<td>Netherlands</td>
<td>Austria</td>
<td>Belgium</td>
</tr>
<tr>
<td></td>
<td>Spain</td>
<td>Sweden</td>
<td></td>
<td>Hungary</td>
<td>Switzerland</td>
</tr>
<tr>
<td>1969</td>
<td>Finland</td>
<td>Yugoslavia</td>
<td>Japan</td>
<td>Norway</td>
<td>Portugal</td>
</tr>
<tr>
<td>1970</td>
<td>Singapore</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hong Kong</td>
<td>USSR</td>
<td>Greece</td>
<td>Israel</td>
<td>Romania</td>
</tr>
<tr>
<td>1971</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1973</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Research Design: Instrumental Variable

- **IV Strategy:**

\[\Delta X_{jd,t} - \delta = \sum d_{66,t} \Delta X_{jd,t} - \delta_{1}, \]

where \(d \) is destination.

- \(\hat{\Delta X}_{jd,t} - \delta_{1} \) with foreign containerization and lags and all combinations of interactions with:
 - product containerizability (source: German Engineering Society, 1968),
 - distance to foreign port,
 - initial foreign market size,
 - intra-US distance to domestic port,
 - oil price

Two approaches to selecting regressors:
1. use foreign container dummy and lags (K-P F-stat = 7)
2. use LASSO to select best predictors (K-P F-stat = 44) (Chernozhukov & Hanson, 2013)

1. LATE is effect of container technology (but low power)
2. LATE is transport costs loosely defined (but high power)
IV Strategy:

Note: \(\Delta X_{j,66-80} = \sum_d \sum_{t=66}^{80} \Delta X_{jd,t:t-1} \), where \(d \) is destination
IV Strategy:

Note: $\triangle X_{j,66-80} = \sum_d \sum_{t=66}^{80} \triangle X_{jd,t:t-1}$, where d is destination

“predict” $\hat{\triangle X}_{jd,t:t-1}$ with foreign containerization and lags
Research Design: Instrumental Variable

- **IV Strategy:**
 - Note: \(\triangle X_{j,66-80} = \sum_d \sum_{t=66}^{80} \triangle X_{jd,t:t-1} \), where \(d \) is destination
 - “predict” \(\hat{\triangle X}_{jd,t:t-1} \) with foreign containerization and lags
 - and all combinations of interactions with:
 - Two approaches to selecting regressors:
 1. use foreign container dummy and lags (K-P F-stat = 7)
 2. use LASSO to select best predictors (K-P F-stat = 44) (Chernozhukov & Hanson, 2013)
 - 1. LATE is effect of container technology (but low power)
 - 2. LATE is transport costs loosely defined (but high power)
Research Design: Instrumental Variable

- **IV Strategy:**
 - Note: \(\Delta X_{j,66-80} = \sum_d \sum_{t=66}^{80} \Delta X_{jd,t:t-1} \), where \(d \) is destination
 - “predict” \(\hat{\Delta X}_{jd,t:t-1} \) with foreign containerization and lags
 - and all combinations of interactions with:
 - product containerizability (source: German Engineering Society, 1968), distance to foreign port, initial foreign market size, intra-US distance to domestic port, oil price

Two approaches to selecting regressors:
1. Use foreign container dummy and lags (K-P F-stat = 7)
2. Use LASSO to select best predictors (K-P F-stat = 44) (Chernozhukov & Hanson, 2013)

- LATE is effect of container technology (but low power)
- LATE is transport costs loosely defined (but high power)
Research Design: Instrumental Variable

- **IV Strategy:**
 - **Note:** \(\Delta X_{j,66-80} = \sum_d \sum_{t=66}^{80} \Delta X_{jd,t:t-1} \), where \(d \) is destination
 - “predict” \(\hat{\Delta X}_{jd,t:t-1} \) with foreign containerization and lags
 - and all combinations of interactions with:
 - product containerizability (source: German Engineering Society, 1968), distance to foreign port, initial foreign market size, intra-US distance to domestic port, oil price

- Two approaches to selecting regressors:
Research Design: Instrumental Variable

- **IV Strategy:**
 - **Note:** \[\Delta X_{j,66-80} = \sum_d \sum_{t=66}^{80} \Delta X_{jd,t:t-1}, \] where \(d \) is destination
 - "predict" \(\hat{\Delta X}_{jd,t:t-1} \) with foreign containerization and lags
 - and all combinations of interactions with:
 - product containerizability (source: German Engineering Society, 1968), distance to foreign port, initial foreign market size, intra-US distance to domestic port, oil price
 - Two approaches to selecting regressors:
 1. use foreign container dummy and lags (K-P F-stat = 7)
Research Design: Instrumental Variable

- **IV Strategy:**
 - Note: $\Delta X_{j,66-80} = \sum_d \sum_{t=66}^{80} \Delta X_{jd,t:t-1}$, where d is destination
 - “predict” $\hat{\Delta X}_{jd,t:t-1}$ with foreign containerization and lags
 - and all combinations of interactions with:
 - product containerizability (source: German Engineering Society, 1968), distance to foreign port, initial foreign market size, intra-US distance to domestic port, oil price

- Two approaches to selecting regressors:
 1. use foreign container dummy and lags (K-P F-stat = 7)
 2. use LASSO to select best predictors (K-P F-stat = 44) (Chernozhukov & Hanson, 2013)
Research Design: Instrumental Variable

- **IV Strategy:**
 - Note: $\triangle X_{j,66-80} = \sum_d \sum_{t=66}^{80} \triangle X_{jd,t:t-1}$, where d is destination
 - “predict” $\triangle \hat{X}_{jd,t:t-1}$ with foreign containerization and lags
 - and all combinations of interactions with:
 - product containerizability (source: German Engineering Society, 1968), distance to foreign port, initial foreign market size, intra-US distance to domestic port, oil price

- Two approaches to selecting regressors:
 1. use foreign container dummy and lags (K-P F-stat = 7)
 2. use LASSO to select best predictors (K-P F-stat = 44) (Chernozhukov & Hanson, 2013)

- 1. LATE is effect of container technology (but low power)
Research Design: Instrumental Variable

- **IV Strategy:**
 - Note: $\Delta X_{j,66-80} = \sum_d \sum_{t=66}^{80} \Delta X_{jd,t:t-1}$, where d is destination
 - “predict” $\hat{\Delta X}_{jd,t:t-1}$ with foreign containerization and lags
 - and all combinations of interactions with:
 - product containerizability (source: German Engineering Society, 1968), distance to foreign port, initial foreign market size, intra-US distance to domestic port, oil price

- Two approaches to selecting regressors:
 1. use foreign container dummy and lags (K-P F-stat = 7)
 2. use LASSO to select best predictors (K-P F-stat = 44) (Chernozhukov & Hanson, 2013)

- 1. LATE is effect of container technology (but low power)
- 2. LATE is transport costs loosely defined (but high power)
First Stage

<table>
<thead>
<tr>
<th></th>
<th>$\Delta XE_{c,66-80}$</th>
<th>$\Delta ME_{c,66-80}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV: $\Delta XE_{c,66-80}$</td>
<td>0.21*** (0.09)</td>
<td>0.24*** (0.11)</td>
</tr>
<tr>
<td>IV: $\Delta ME_{c,66-80}$</td>
<td>0.16*** (0.03)</td>
<td>0.37*** (0.13)</td>
</tr>
<tr>
<td>MFG Share</td>
<td>0.09*** (0.02)</td>
<td>0.19*** (0.04)</td>
</tr>
<tr>
<td>K-P Wald F-Statistic</td>
<td>44.01</td>
<td>44.01</td>
</tr>
</tbody>
</table>
Results: Land Price, IV

[Graph showing export and import exposure over different years]
Economic Magnitude: Land Price (LP)

- Implied net percentage change in Land Price:

\[
\hat{\beta}_1 \triangle XE_{66-80} + \hat{\beta}_2 \triangle ME_{66-80}
\]
Economic Magnitude: Land Price (LP)

- Implied net percentage change in Land Price:

\[\beta_1 \triangle \bar{XE}_{66-80} + \beta_2 \triangle \bar{ME}_{66-80} \]

- 70-80: \(\triangle \log(LP) = 4\% \)
Economic Magnitude: Land Price (LP)

- Implied net percentage change in Land Price:

\[\hat{\beta}_1 \Delta XE_{66-80} + \hat{\beta}_2 \Delta ME_{66-80} \]

- 70-80: \(\Delta \log(\text{LP}) = 4\% \)

- 80-90: \(\Delta \log(\text{LP}) = 5.4\% \)
Economic Magnitude: Land Price (LP)

- Implied net percentage change in Land Price:

\[
\hat{\beta}_1 \triangle \overline{XE}_{66-80} + \hat{\beta}_2 \triangle \overline{ME}_{66-80}
\]

- 70-80: \(\triangle \log(LP) = 4\%

- 80-90: \(\triangle \log(LP) = 5.4\%

- 90-00: \(\triangle \log(LP) = 5.2\%\)
Results: Median Income, IV
Economic Magnitude

- Implied net percentage change in INC - HP:

 - 70-80: \(\Delta \log(\text{INC}) \Delta \log(\text{HP}) = 1.8\% \)
 - 80-90: \(\Delta \log(\text{INC}) \Delta \log(\text{HP}) = 1.5\% \)
 - 90-00: \(\Delta \log(\text{INC}) \Delta \log(\text{HP}) = 2.2\% \)

Upper bound on gains if non-housing component of the price index fell on average due to the shock.
Economic Magnitude

- Implied net percentage change in INC - HP:
 - 70-80: $\triangle \log(INC) - \triangle \log(HP) = 1.8\%$
Economic Magnitude

- Implied net percentage change in INC - HP:
 - 70-80: $\Delta \log(INC) - \Delta \log(HP) = 1.8\%$
 - 80-90: $\Delta \log(INC) - \Delta \log(HP) = 1.5\%$
Economic Magnitude

- Implied net percentage change in INC - HP:
 - 70-80: $\triangle \log(INC) - \triangle \log(HP) = 1.8\%$
 - 80-90: $\triangle \log(INC) - \triangle \log(HP) = 1.5\%$
 - 90-00: $\triangle \log(INC) - \triangle \log(HP) = 2.2\%$
Economic Magnitude

- Implied net percentage change in INC - HP:
 - 70-80: $\Delta \log(INC) - \Delta \log(HP) = 1.8\%$
 - 80-90: $\Delta \log(INC) - \Delta \log(HP) = 1.5\%$
 - 90-00: $\Delta \log(INC) - \Delta \log(HP) = 2.2\%$

- Upper bound on gains if non-housing component of the price index fell on average due to the shock
Role for Labor and Housing Supply Elasticities

- Estimate local labor supply elasticities at the county level, create emp-weighted CZ mean values

\[
\text{HS}_{c, 50} - 70 = a + bHS_c [g_c \Delta \log \text{Prod}_{c, 50} - 70] + \epsilon_{c, 50} - 70
\]

where \(HS \) is housing supply; \(g_c \) are CZ FE; \(\text{Prod} \) is VA per Worker

\[
\text{Prod}_{ct} = \sum_j L_{cj, 1959} L_{c, 1959} \text{Prod}_{jt}
\]

the vector \(b_{HS} \) are our HS elasticities

Repeat for Labor Supply to obtain vector \(b_{LS} \)
Role for Labor and Housing Supply Elasticities

- Estimate local labor supply elasticities at the county level, create emp-weighted CZ mean values
- Estimate housing supply elasticities at CZ level

\[\Delta \log HS_{c,50-70} = a + b HS_c [g_c \Delta \log Prod_{c,50-70}] + \epsilon_{c,50-70} \]

where \(HS \) is housing supply; \(g_c \) are CZ FE; \(Prod \) is VA per Worker

\[Prod_{ct} = \sum_j L_{cj,1959} L_{c,1959} Prod_{jt} \]

the vector \(b_{HS_c} \) are our HS elasticities

Repeat for Labor Supply to obtain vector \(b_{LS_c} \)
Role for Labor and Housing Supply Elasticities

- Estimate local labor supply elasticities at the county level, create emp-weighted CZ mean values
- Estimate housing supply elasticities at CZ level
- For pre-period, 1950-1970 (10-year differences), estimate:

$$\triangle \log HS_{c,50-70} = \alpha + \beta^HS_c [\gamma_c \times \triangle \log Prod_{c,50-70}] + \epsilon_{c,50-70}$$

- The vector b_{HS_c} are our HS elasticities
- Repeat for Labor Supply to obtain vector b_{LS_c}
Role for Labor and Housing Supply Elasticities

- Estimate local labor supply elasticities at the county level, create emp-weighted CZ mean values
- Estimate housing supply elasticities at CZ level
- For pre-period, 1950-1970 (10-year differences), estimate:

 \[\Delta \log HS_{c,50-70} = \alpha + \beta_{c}^{HS} [\gamma_{c} \times \Delta \log Prod_{c,50-70}] + \epsilon_{c,50-70} \]

- where \(HS \) is housing supply; \(\gamma_{c} \) are CZ FE; \(Prod \) is VA per Worker
Role for Labor and Housing Supply Elasticities

- Estimate local labor supply elasticities at the county level, create emp-weighted CZ mean values
- Estimate housing supply elasticities at CZ level
- For pre-period, 1950-1970 (10-year differences), estimate:

\[
\triangle \log HS_{c,50-70} = \alpha + \beta^{HS}_c [\gamma_c \times \triangle \log Prod_{c,50-70}] + \epsilon_{c,50-70}
\]

where \(HS \) is housing supply; \(\gamma_c \) are CZ FE; \(Prod \) is VA per Worker

- and \(Prod_{ct} = \sum_j \frac{L_{ej,1959}}{L_{c,1959}} Prod_{jt} \)
Role for Labor and Housing Supply Elasticities

- Estimate local labor supply elasticities at the county level, create emp-weighted CZ mean values
- Estimate housing supply elasticities at CZ level
- For pre-period, 1950-1970 (10-year differences), estimate:

\[\triangle \log HS_{c,50-70} = \alpha + \beta^{HS}_c \left[\gamma_c \times \triangle \log Prod_{c,50-70} \right] + \epsilon_{c,50-70} \]

- where \(HS \) is housing supply; \(\gamma_c \) are CZ FE; \(Prod \) is VA per Worker
- and \(Prod_{ct} = \sum_j \frac{L_{ej,1959}}{L_{c,1959}} Prod_{jt} \)
- the vector \(\beta^{HS}_c \) are our HS elasticities
Role for Labor and Housing Supply Elasticities

- Estimate local labor supply elasticities at the county level, create emp-weighted CZ mean values
- Estimate housing supply elasticities at CZ level
- For pre-period, 1950-1970 (10-year differences), estimate:

\[
\triangle \log HS_{c,50-70} = \alpha + \beta^H_{c} [\gamma_c \times \triangle \log \text{Prod}_{c,50-70}] + \epsilon_{c,50-70}
\]

- where HS is housing supply; γ_c are CZ FE; $Prod$ is VA per Worker
- and $Prod_{ct} = \sum_j \frac{L_{cj,1959}}{L_{c,1959}} Prod_{jt}$
- the vector β^H_c are our HS elasticities
- Repeat for Labor Supply to obtain vector β^L_c
Preliminary result

- Preliminary result: effects seem to go in the predicted direction
Preliminary result

- Preliminary result: effects seem to go in the predicted direction
- CZs with “low” HS elasticities have a larger response to the shock
Preliminary result

- Preliminary result: effects seem to go in the predicted direction
- CZs with “low” HS elasticities have a larger response to the shock
- those with “low” LS elasticities also more responsive
Summary

- Post-WWII trade seems to have raised real living standards
Summary

- Post-WWII trade seems to have raised real living standards
- Winners and losers not just at sector level, but geographic level
Summary

- Post-WWII trade seems to have raised real living standards
- Winners and losers not just at sector level, but geographic level
- To Do:
Summary

- Post-WWII trade seems to have raised real living standards
- Winners and losers not just at sector level, but geographic level

To Do:

- Many things:
Summary

- Post-WWII trade seems to have raised real living standards
- Winners and losers not just at sector level, but geographic level

To Do:

Many things:
- better/more measures of HS and LS elasticities
Summary

- Post-WWII trade seems to have raised real living standards
- Winners and losers not just at sector level, but geographic level

To Do:

Many things:

- better/more measures of HS and LS elasticities
- look at movement of fixed factors to explain SR vs LR
Summary

- Post-WWII trade seems to have raised real living standards
- Winners and losers not just at sector level, but geographic level

To Do:

Many things:
- better/more measures of HS and LS elasticities
- look at movement of fixed factors to explain SR vs LR
- industry-level analysis? “Direct v Indirect” effects
Summary

- Post-WWII trade seems to have raised real living standards
- Winners and losers not just at sector level, but geographic level

To Do:

Many things:

- better/more measures of HS and LS elasticities
- look at movement of fixed factors to explain SR vs LR
- industry-level analysis? “Direct v Indirect” effects
- 2nd Paper: Female LFP
Summary

- Post-WWII trade seems to have raised real living standards
- Winners and losers not just at sector level, but geographic level

To Do:

- Many things:
 - better/more measures of HS and LS elasticities
 - look at movement of fixed factors to explain SR vs LR
 - industry-level analysis? “Direct v Indirect” effects
 - 2nd Paper: Female LFP
 - any other ideas?